	6
Consider the region defined by y	$y \le \frac{6}{x}$, $y \ge 4 - \frac{2}{3}x$ and $x \ge 1$.
	A
×	$= 6 \times = \frac{3}{4}(4-11)$

(1,6) - y=8 (1,6) - y=8

SCORE: / 14 PTS

[a] If the region is revolved around the line y = 8,

write, **BUT DO NOT EVALUATE**, an integral (or sum of integrals) for the volume of the solid

- $\frac{6}{x} = 4 \frac{2}{3} \times 18 = 12x 2x^{2}$ $2x^{2} 12x + 18 = 0$ $2(x 3)^{2} = 0$
- [i] using the disk or washer method (NOTE: You do NOT need to simplify your integrand.)

D FOR BACH

ITEM UNLESS

X=3

OTHERWISE

O FOR T

O FOR R2-12

[ii] using the shell method (NOTE: You do NOT need to simplify your integrand.)

$$2\pi \left(\int_{2}^{\frac{19}{2}} (8-y)(\frac{6}{9}-\frac{3}{2}(4-y)) dy + \int_{\frac{19}{2}}^{6} (8-y)(\frac{6}{9}-1) dy \right)$$

[b] Suppose the region is the base of a solid. Cross sections perpendicular to the x – axis are isosceles right triangles with their hypoteneuse in the base. Write, <u>BUT DO NOT EVALUATE</u>, an integral (or sum of integrals) for the volume of the solid.

$$\frac{1}{4}\int_{1}^{3} \left(\frac{6}{x} - (4 - \frac{2}{3}x)\right)^{2} dx$$

Find the area bounded by the curves $y = 4x^2 + 8x$ and $y = 4x^3$.

NOTE: Your final answer must be a number, not an integral nor sum of integrals.

$$4x^{2}+8x=4x^{3}$$

$$0=4x^{3}-4x^{2}-8x$$

$$0=4x(x-2)(x+1)$$

$$x=-1,02$$

$$X = -1,0,2$$

$$\int_{-1}^{0} (4x^{3} - (4x^{2} + 8x)) dx + \int_{0}^{2} (4x^{2} + 8x - 4x^{3}) dx$$

$$\left| \int_{-1}^{1} (4x^{3} - (4x^{2} + 8x)) dx + \left| \int_{0}^{1} (4x^{2} + 8x - 4x^{3}) dx \right|^{2}$$

$$= \left(\left| \left(x^{4} - \frac{4}{3}x^{3} - 4x^{2} \right) \right|^{2} + \left(\left| \left(-x^{4} + \frac{4}{3}x^{3} + 4x^{2} \right) \right|^{2} \right)^{2}$$

$$= \left(\left| \left(x^{4} - \frac{4}{3}x^{3} - 4x^{2} \right) \right|^{2} + \left(\left| \left(-x^{4} + \frac{4}{3}x^{3} + 4x^{2} \right) \right|^{2} \right)^{2}$$

$$= (-(1+\frac{4}{3}-4)+(-16+\frac{32}{3}+16)$$

SCORE: _____/ 8 PTS

(1) EACH

The region bounded by $y = \sqrt{x+3}$, y = x-3 and y = 2 is revolved around the line y = -4.

SCORE: /8 PTS

Write, <u>BUT DO NOT EVALUATE</u>, an integral (or sum of integrals) for the volume of the solid <u>using as few integrals as possible</u>.

$$y+3=y^2-3$$

 $0=y^2-y-6$
 $0=(y-3)(y+2)$
 $y=3,-2$

$$2\pi \int_{2}^{3} (y+4)(y+3-(y^{2}-3)) dx$$